A Proposal for Subcategories Within Gifted or Talented Populations
Francois Gagne
Université du Québec à Montréal, Montréal, Canada

This text attempts to answer two questions: (a) How far from average should a person’s abilities or achievements be for the labels gifted or talented to be applied? and (b) Should we subdivide the gifted and talented populations into more homogeneous subgroups, and, if so, in what ways? By asking where, on any performance score distribution, should the threshold between the gifted (or talented) and non-gifted zones be placed, the first question automatically addresses the problem of the prevalence of these above-average individuals. The second question is also concerned with the prevalence of more extreme subgroups (e.g., the “highly” gifted).

Are these important questions? As will be argued below, the first question is at the heart of clear and complete definitions of the giftedness and talent constructs. Moreover, it is at the forefront of laypersons’ interrogations; indeed, from my experience of dozens of interviews with the media, that first question ranks second only to “How do you define giftedness?” As for the second, it is directly related to the common use of adverbs like “exceptionally,” “highly,” or “moderately” to differentiate extreme subgroups from the “garden variety” of gifted and talented individuals. I truly believe that every scholar or professional in the field acknowledges the need for differentiation within the gifted and talented populations, not only to recognize major differences in ability and personality profiles, but also to stress differences in educational and social needs. Before examining my own answer to these questions, let us look briefly at some answers—and lack thereof—in the gifted education literature.

Overview of the Literature

About the Minimum Threshold
Concerning the first question, none of the better-known handbooks (e.g., Borland, 1989; Clark, 1997; Colangelo & Davis, 1997; Davis & Rimm, 1989; Gallagher, 1985; Piirto, 1994; Tannenbaum, 1983) discusses the problem of the size of this subpopulation; no Subject Index includes the term prevalence or an appropriate synonym. At best, one will find brief allusions to some common criteria, like IQs of 125 or 130 or achievement test scores above a predetermined percentile. A parallel survey of the major definitions pro-

PUTTING THE RESEARCH TO USE

Could anything be more practical for the field of gifted education than a shared set of definitions for the major concepts we use daily? In this text, three concrete “tools” are offered to the gifted education community: (a) a clear and defensible minimum threshold (top 10%) giving access to the gifted or talented populations; (b) a series of four simple, equivalently spaced (next 10%), consecutive cut-offs to subdivide the gifted or talented populations into progressively more selective subgroups; and (c) a set of labels, most of them well-known, to describe each of these five categories. The author considers that he has done his job. Now, the ball is in the educators’ court. They are the ones (scholars, administrators, coordinators, teachers) who will put this research to use in their daily life, first by learning the system (easy!), and then by using it to describe individual students, subgroups of students, samples in a study, and so forth. The more dissemination there is, the more useful this system will become.
posed over the last four decades (e.g., Borland; DeHann & Havighurst, 1961; Feldhusen, 1986; Gagné, 1985; Gold, 1965; Marland, 1972; Morelock, 1996; Piirto; Renzulli, 1979; Sternberg, 1986; Tannenbaum; Taylor, 1975) reveals that only two of them explicitly mentioned a prevalence estimate. Marland stated: "It can be assumed that utilization of these criteria for identification of the gifted and talented will encompass a minimum of 3% to 5% of the school population" (p. 5). For his part, Gagné (1993) adopted the top 15% as his threshold for membership in either the gifted or talented populations. No doubt the absence of agreed-upon definitions for the giftedness and talent constructs explains, in large part, a similar lack of a shared prevalence estimate. If scholars shy away from that thorny question, program coordinators have no choice but to address it—at least implicitly—and give some answer when they plan their budget or define the identification process in their school district. Similarly, researchers do answer that question, again implicitly, through the operational definitions of their samples of gifted or talented individuals.

Such an oversight is very surprising since the question of prevalence is directly linked to the definition of the concepts of giftedness and talent. Why? Because these concepts belong to the category of normative concepts, namely concepts which pinpoint a special "non-normal" subgroup within a general population. Terms like poverty, obesity, mental deficiency, genius, deafness, and so forth, are also members of that category. Francis Galton (1892/1962) was among the first—if not the first—to point out that such normative concepts had to be defined not only descriptively, but also quantitatively. In his study of the family relationships between eminent Englishmen, he himself applied his dictum by defining "eminence" as being among the top 1:4,000 within the English population in terms of public notoriety (ascertained through Who's Who books and so forth). Without Galton's precision, the concept of eminence could easily have been interpreted very differently from person to person: more "democratically" by some (e.g., 1:1,000) or more "selectively" by others (e.g., 1:20,000). His operationalization could give rise to controversy and debate (as is the case with most of these normative concepts!), but at least his quantification made clear to all what extension he gave to his concept of eminent individuals. Alas, such clarity and transparency have not yet reached the field of gifted education.

The fact that the prevalence question is not discussed does not mean that estimates have not been regularly proposed. In fact, they abound; and the result of that creativity is variability, huge variability, not only within the field, but also within the general population. Scholars' proposals can easily range from the 1% adopted by Terman (1925) with his threshold of a 135 IQ, or the 3% to 5% in the above-mentioned Marland definition, to Gagné's much more inclusive 15%, and even a 20% advanced by Renzulli (1986) to create the talent pools in his Revolving Door model. What about the ratios used in school districts? In a survey of state policies, Zettel (1979, p. 66) affirmed that "the most common standard among states using intelligence tests ... appears to be a minimum intelligence score of 130 [top 2.5%]." More recently, Mitchell (1986) pointed out that "states using intelligence and achievement test scores for identification generally use cutoff points which range between the 95th and 98th percentile levels" (p. 240). The author did not specify whether these cutoff points were for individual measures or combined ones. If the process was disjunctive (A or B or C), as would be the case when a school district follows the U.S.O.E./Marland (1972) definition, then we would expect the total percentage of selected subjects to be significantly larger than the cutoff chosen for each instrument. If, on the other hand, the process was conjunctive (A and B and C), as would be the case if the Renzulli (1979) three-ring definition of giftedness was adopted, then the total percentage of selected subjects would be significantly smaller than any of the cutoff ratios (see Bélanger, 1997).

Concerning the general population, Gagné, Bélanger, and Motard (1993) discovered that laypersons' estimates of gifted and talented individuals ranged from under 1% to 99%. Gifted individuals were perceived to be about half as numerous (M = 19%, SD = 18%) as talented individuals (M = 36%; SD = 30%). The size of the standard deviations says a lot about the variability of these estimates among laypersons. A question immediately comes to mind: what does giftedness really mean to someone who says that the prevalence of gifted people does not exceed 2% compared with another who affirms that well over half of the population can be considered gifted? Without a doubt, they are not referring to the same thing. In brief, what the above survey illustrates quite clearly is our disparate views on the "how many" question, a diversity which suggests underlying parallel disparities in the meaning given to the giftedness and talent constructs.

About Levels of Giftedness/Talent

The situation is more or less the same when one looks at the second question mentioned at the begin-
ning of this text, namely the creation of subcategories within the gifted or talented populations. That question can be divided into two distinct problems: (a) the cutoff points for these more selective subgroups and, consequently, their size, and (b) the appropriate label to describe each of them. As mentioned earlier, dozens, if not hundreds, of academics and professionals have noted the importance of distinguishing subgroups within the gifted population, pointing out that intellectually gifted individuals have IQs that range from around 120/125 to over 200+, a span almost as large as the one covered from that same cutoff of 120/125 to the depths of mental deficiency (IQs of 50 or so). No one in the field would question such a need: time and again researchers, consultants, and school psychologists involved with this target population (e.g., Gross, 1993; Hollingworth, 1942; Morelock, in press; Silverman & Kearney, 1989) have observed how much exceptionally (or extremely, or profoundly) gifted individuals differ from those who just exceed the minimum threshold used in the identification process.

While the need for subgroups is generally recognized, few have gone as far as to propose an explicit system of progressively more selective categories. Apart from Gagné's (1993) proposal, I found only two. The first one, by Robeck (1968), is a system of four categories in which she used the terms able, talented, gifted, and highly gifted to label subgroups corresponding to +1 to +4 standard deviations from a 100 IQ average (SD = 16). Note that Robeck differentiated giftedness and talent in terms of level of intelligence, a distinction sometimes found among laypersons (Gagné et al., 1993). The second one comes from Gross (1993); it is not a formal proposal, but it brings together, in a structured fashion, information from various sources. She states:

The term 'exceptionally gifted' refers to children who score in the IQ range 160-179 (Kline & Meekstroth, 1985), while 'profundely gifted' refers to those very rare individuals who score at or above IQ 160 (Webb, Meekstroth, & Tolan, 1983). ... Moderately gifted students of IQ 125 appear in the population at a ratio of approximately 1 in 20. Highly gifted students of IQ 145 are approximately 1 in 1,000. (p. 8)

What must be pointed out is that the whole question of subgroups has strictly involved intellectual giftedness and its privileged measure, the IQ score. I did not deem it necessary to make an exhaustive survey of the literature to extract all the pairings between labels and cutoff scores. A few examples should paint a good enough picture of the major trends. A first common subgroup is composed of individuals from the very high end of the IQ distribution, those whose intellectual giftedness is usually labeled exceptional, extreme, very high, profound, and so forth. There is no consensus, either in terms of terminology or in terms of precise threshold. For instance, Hollingworth (1942) defined exceptionally gifted children as those with IQs of 180 or more; Gross (1993) used the same label, but with a cutoff score of 160, while Lovecky (1994) chose a cutoff IQ of 170. So, there is a tendency to create a special subgroup with children whose IQs exceed the +4 or +5 standard deviation. In terms of ratios, a very approximate figure would be 1:50,000 or fewer. Imprecision is inevitable since no IQ test can reliably measure such extreme deviations from the average.

Another subgroup appears also very popular: those labeled highly gifted. In that case, the cutoff scores are lower, usually ranging from 140 to 150. It is worth pointing out that this 10-point range looks small if we consider that the standard error of measurement of the best individually administered IQ tests is close to 5 points (see Sattler, 1988); yet, it still corresponds to a tenfold difference—from 1:200 to 1:2000 approximately—in the size of the population. The last commonly used label is moderately. In that case, it is not clear if that subgroup corresponds to the lowest level within the intellectually gifted population. In many cases, a threshold IQ of 130 or so will be mentioned (e.g., Morelock, 1996), but that can vary. Lovecky (1994), for instance, used that label to describe a sample where the IQs ranged from 140 to 160, while Gross (1993) associated that label with a threshold IQ of 125.

In summary, the global picture shows a series of interconnected questions cascading from the definition of the basic concepts to the inclusion in these definitions of an estimate of prevalence, as Marland (1972) and Gagné (1993) did, to a subdivision of the giftedness/talent range into a certain number of more homogeneous levels, appropriately labeled. Concerning the last point, from my own experience in the field combined with an extensive review of the literature, I have the distinct impression that the most common "implicit theory" in the mind of gifted education professionals takes the form of a three-category system of subgroups (mildly/moderately, highly, exceptionally), with a very imprecise minimum threshold and equally approximate cutoffs between the subgroups.

Gagné's Proposal

While all kinds of bits and pieces were found in the literature, it appears that only Gagné (1993) analyzed this complex question in depth. Like a few other schol-
ars (e.g., Borland, 1989), he identified the partial arbitrariness of any threshold as a major problem preventing a satisfactory answer to the prevalence (and levels) question. Indeed, the main obstacle to a more specific and consensual position on the subject of prevalence is undoubtedly the arbitrariness of any cutoff point placed on a continuous score distribution to mark the "end" of normal abilities and the "beginning" of gifted or talented performance. As Gagné (1993) comments:

"Beyond the +4 S.D. threshold, the prevalence becomes so small (1 in 50,000) that no further divisions are necessary" (p. 82).

Critique and Counter-proposal

Examined in the light of the literature review, Gagné’s (1993) proposal appears as a formalization and explicitation of the underlying implicit theory of many professionals, with just a "generous" first level added. By deciding to anchor his system on the standard deviations of the normal distribution, Gagné followed in the footsteps of most preceding scholars, who chose IQ values corresponding to one standard deviation unit or the other. Choosing the normal curve as guide has many drawbacks. First, it produces a very irregular "staircase," because the selection criterion changes from one level to the next. Granted that Gagné’s system begins in a regular fashion: the first level selects the top 1:6 from the general population, while the next level again selects the top 1:6 among basically gifted or talented individuals (see Table 1). But, the selection ratio for the third level increases to 1:20; in other words, the “highly” gifted or talented correspond to the top 5% of the moderate group. The situation gets even worse from level 3 to level 4, where the selection ratio becomes approximately 1:100. Thus, the regularity of the successive standard deviation units creates a major irregularity in the selection criterion Which form of regularity is preferable? Again, I must reiterate that, because the whole subject is fraught with arbitrariness, rational arguments are hard to find to support one position over the other unequivocally. In my view, the regularity of ratios should appeal to a much larger group of potential users who are generally unfamiliar with parametric statistics. Other arguments will be advanced below.

The second major drawback is that the regularity of the standard deviation units applies almost exclusively to IQ tests. All other measures gathered for identification purposes either do not have norms (e.g., parent or teacher checklists, peer nomination forms, rating scales for portfolios) or use different norming systems. Such is especially the case with standardized achievement tests, probably the second most popular type of information used for selection purposes (Cox, Daniel, & Boston, 1985). In that case, the norming system favored by most editors is percentiles. Based on percentages, but different from the percentages that teach-

Table 1

Gagné’s (1993) System of Categories Within the Gifted/Talented Population

<table>
<thead>
<tr>
<th>Label</th>
<th>S.D.</th>
<th>IQ equiv.</th>
<th>% of General Population</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basically</td>
<td>+1</td>
<td>± 112/115</td>
<td>15-20%</td>
<td>1 in 5 or 6</td>
</tr>
<tr>
<td>Moderately</td>
<td>+2</td>
<td>± 125/130</td>
<td>2-4%</td>
<td>1 in 35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(± 10)</td>
</tr>
<tr>
<td>Highly</td>
<td>+3</td>
<td>± 140/145</td>
<td>.1-.3%</td>
<td>1 in 600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(± 300)</td>
</tr>
<tr>
<td>Extremely</td>
<td>+4</td>
<td>± 155/160</td>
<td>±.002%</td>
<td>1 in 50,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(± 10,000)</td>
</tr>
</tbody>
</table>

Note. Gagné, 1993, p. 82. Adapted with permission.
ers put on homework or examinations, percentiles are easy to understand because they are interpreted as ratios. For instance, belonging to the top 20% (or 10%, or 1%) within a given reference group is an expression that is easily understood, not only by educators but by the general public as well. They are also used in many non-academic fields (e.g., music, sports), indeed any time a ranking is made on the basis of some performance measure. Even when percentiles are not directly available, frequently they can be reconstructed. For instance, one only needs to know the approximate number of piano students at a given level of study in a city or county to estimate with some accuracy the rarity of winning a local or regional piano competition. Similarly, one would compare the number of same age players to obtain the approximate percentile corresponding to membership in an elite team.

In brief, ratios are easy to compute if one has access to simple statistical information.

Having decided to structure a category system around ratios instead of standard deviations, one needs to choose the most appropriate one. And what ratio is the most natural, the most simple to understand? Undoubtedly a base-10 ratio, which allows passing from one level to the next just by moving a decimal point. No wonder that the metric system, which is based on such a ratio, has been adopted by almost every country in the world—except the US! Consequently, my counter-proposal, shown in Table 2, is a five-level system, in which each level, including the first one, corresponds to the top 10% of the preceding level. Thus, the gifted or talented population in any one ability domain or field of human activity is defined as the top 10% of individuals. For instance, in a classroom of 30 students, the top three achievers would be labeled (mildly) talented academically; similarly, in a group of first-year music students, the top 10% would be called mildly talented in music, and the top 1% moderately talented. If a young gymnast’s level of excellence placed her among the top 1% (1:1,000) of all individuals active in gymnastics, then she would deserve, within this metric-based (MB) system, the label of highly talented in gymnastics.

Here are the major advantages of this MB system.

1. Recalling Gagné’s (1993) preoccupation with a logical solution, I submit that the adoption of the metric system instead of the standard deviation cutoffs as the system’s backbone is no less logical; it is just a different logic. As noted above, the logic of the MB system resides in the regularity of the cutoff criterion for each successive subgroup.

2. The cutoff criterion—a percentage—is much easier to understand and memorize by those who are not familiar with statistics or the psychometrics of intelligence measurement. Indeed, my own experience indicates that few professionals in gifted education, be they teachers, coordinators or administrators, feel comfortable with the statistical operations associated with the normal distribution. Adopting a more user-friendly system should facilitate its dissemination; yet I made sure that user-friendliness would not be attained at the expense of scientific soundness.

3. The MB system is easier to apply to measurements that do not clearly follow a normal distribution, as is the case with athletic achievements, leader performances, achievements in the arts or in business, and so forth. For instance, average measures are never taken into consideration in sports; the benchmark is either a record, another competitor’s performance to beat, a standard performance to attain in order to gain membership into a competitive team, and so forth. What is used frequently is a system of “geographic” achievements: medals or prizes at the local, county, state or national level (see Kay & Gagné, 1997). In such cases, as already noted, ratios are much easier to use than standard deviations from the mean.

4. The MB system allows for much easier comparisons of subgroups within the gifted or talented populations. For instance, from the ratios in Table 2, one can see that there would be only one extremely gifted individual on average in a group of 10,000 mildly gifted persons. Even among moderately gifted (or talented) individuals, the prevalence of extremely gifted persons would not exceed

<table>
<thead>
<tr>
<th>Label</th>
<th>Percentage</th>
<th>Ratio</th>
<th>IQ</th>
<th>SD equivalent (SD = 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mildly</td>
<td>10%</td>
<td>1:10</td>
<td>120</td>
<td>+ 1.3</td>
</tr>
<tr>
<td>Moderately</td>
<td>1%</td>
<td>1:100</td>
<td>135</td>
<td>+ 2.3</td>
</tr>
<tr>
<td>Highy</td>
<td>1%</td>
<td>1:1,000</td>
<td>145</td>
<td>+ 3.0</td>
</tr>
<tr>
<td>Exceptionally</td>
<td>0.1%</td>
<td>1:10,000</td>
<td>155</td>
<td>+ 3.7</td>
</tr>
<tr>
<td>Extremely</td>
<td>0.001%</td>
<td>1:100,000</td>
<td>165</td>
<td>+ 4.3</td>
</tr>
</tbody>
</table>
1:1,000 on average. So, extreme giftedness is a very rare phenomenon indeed!

5. As shown in the literature review, the labels used in the MB system coincide quite well with those most commonly found in the literature for approximately similar subcategories.

6. Recall that the gray zone was shown to extend from approximately 1%-2% to 15%-20%. Within that zone, it is not possible to justify one cutoff score more so than any other; thus, a 10% cutoff within the general population is no less logical than the 15% proposed by Gagné (1993). But, by placing the minimum threshold close to the midpoint of that gray zone, I offer a “Solomon’s judgment” solution, a negotiator’s middle of the road proposal. This should equally satisfy or dissatisfy those who lean toward either of the two extremes, and thus facilitate—or hinder—its dissemination.

7. For those who want to remain faithfully attached to IQ scores, the IQ equivalents which correspond to each successive threshold are almost as easy to memorize as the traditional values associated with standard deviation cutoffs. As shown in Table 2, all the values are multiples of five; also, except for the passage from level 1 to level 2, they all increase by 10 points. Indeed, when I discovered that the decimal cutoffs coincided so well with easy to remember IQ equivalents, I knew that it had some chance of rallying even the staunchest supporters of an IQ-based system.

8. Finally, above and beyond its logic, when I first conceived this system, it really felt (almost emotionally) like a very elegant solution to a long-standing problem.

Additional Comments

1. The five labels and their respective ratios apply to any type of giftedness or talent, as defined in my Differentiated Model of Giftedness and Talent (see Gagné, 1995). Since the DMTG belongs to a multifaceted approach to giftedness and talent (Borland, 1989), its disjunctive structure, as well as the low to moderate correlations between abilities, increases the total population of gifted and talented persons well beyond the basic threshold of 10% used for each ability. For instance, only a small percentage of the top 10% in intellectual abilities will appear among the top 10% in socioaffective natural abilities, or the top 10% in natural physical abilities (see Gagné, in press, for a more detailed discussion of that question).

2. The use of the first label—mildly—is optional when the target group includes individuals who might also belong to any level beyond the first one. In that case, the labels gifted and talented are used in a generic sense. The label mildly is useful when a level 1 group is compared to a group of subjects from any other level.

3. I chose the term “extreme” instead of “profound” to qualify the highest level. Even though profound goes well with thinking, because it is contrasted with superficial, its connotation of “lower depths” fits better with mental deficiency or depression than with those who mentally soar so high above average thinkers.

4. One group that might express objections to my minimum threshold of 10% is composed of educators and academics who have used for a long time the IQ 130 threshold. I can only hope that these professionals will revise their position and come to adopt the more generous threshold of the MB system. After all, a 10% cutoff separates only the top three pupils on average in a typical heterogeneous classroom. It seems to me already sufficiently selective, especially in view of the possibility of reselecting more marginal groups within that global population of gifted or talented individuals. At worst, those who wish to maintain a more selective position could put aside the first level and start their category system with the “moderately” gifted or talented.

5. Another group may also hesitate to adopt this minimum threshold, namely administrators and program coordinators in school districts. As shown in Mitchell’s (1988) survey, they frequently have in mind a 5% target as they plan their selection procedures. Whether this target is imposed by limited financial resources, theoretical beliefs, or custom is beside the point here. I hope that this proposal will prompt them to look more closely at the next—unselected—5% and assess their enrichment needs. They could look at Reis and Renzulli’s (1982) study, in which they observed no significant differences in performance within an enrichment service between two groups of pupils, one chosen with very strict criteria and another identified with broader ones. At worst, nothing prevents program coordinators from adopting the present proposal, with its 10% minimal threshold, while temporarily servicing a smaller percentage of students in enrichment programs. It would alert local administrators that existing services are minimal and could
be extended to a population at least twice as large.

6. I could have created a sixth level by introducing a 1:1 million ratio, but I decided to endorse Gagné’s (1993) position on that question; I believe that membership in a group as select as the top 1:100,000 is already quite an extraordinary achievement. In arts and sports, for instance, such a ratio probably includes only individuals who have attained international eminence, especially if the reference group is limited to those active in that field of talent (see Gagné, 1993, for a discussion of the reference group problem).

7. In some areas, extremely high achievement is not easy to assess reliably. For instance, let us look at the standardization sample of the WISC-III, one of the most popular IQ tests. It was composed of a total of 2,200 children and adolescents aged 6 to 16, 200 per age group (Wechsler, 1991). Using the MB system’s definition of “moderate” giftedness, namely the top 1%, one would expect that total sample to include 20 to 25 moderately gifted individuals, which is approximately what was found (see Table 2.8 in Wechsler, 1991). This means that there are only about two of them on average in each age group. If it is possible, then, to estimate with any degree of accuracy the performance of highly gifted individuals, all the more so exceptionally or extremely gifted ones? How can we know what performances correspond to a 160 IQ at a given age, when the standardization sample includes not a single child who attained such a level? One needs to do quite a few extrapolations and live with the inherent imprecision of such a procedure. In short, extraordinary intellectual performances cannot be measured with any degree of accuracy because of the immense logistical problem of assembling an appropriate reference group.

8. The IQ values in Table 2 were obtained from tables of areas under the normal curve. In other words, they imply a normal distribution of IQs. But, it seems that there might be an overrepresentation of individuals in the highest levels of measured intelligence. Among others, Gross (1993) states that “a number of researchers in gifted education have proposed that the number of children who score in the extremely high ranges of IQ may somewhat exceed the theoretical expectations derived from the normal curve” (p. 8). How could that affect the MB system? Not at all, since the ratios are the backbone of the system. If such an overrepresentation was eventually confirmed and its degree accurately measured, then the IQ equivalents presented in Table 2 would just have to be slightly modified to ensure a more exact fit with the ratios of the MB system.

9. I mentioned earlier that Gagné’s (1993) proposal describes each level’s threshold as a zone which takes into account the imperfect reliability of measures of ability. By the way, Robeck (1968) did the same. I now believe that it creates a system which looks unduly complex and ambiguous; the system itself should be kept simple and clean-cut. Let us leave to users the task of deciding how to apply this system in concrete situations, when to bend the rule—slightly—to include a particular child into the mildly gifted group or the moderately gifted one because additional information justifies it. The group would still bear the label of the vast majority of those who respect the operational definition associated with the label. Using a clean-cut set of thresholds also respects the partial arbitrariness of the system.

10. There is no doubt that it will not always be easy to identify the appropriate degree of exceptionality for many achievements. For instance, does winning a county piano competition make one mildly, moderately, or highly talented? To what level of talent does being chosen for the state swimming team correspond? Answering such questions, one important hurdle in the implementation of the Talent Profile (see Kay & Gagné, 1997), would be an interesting challenge for educators or trainers in these various fields.

11. One way to bring more accuracy to the placement of students within some of the high levels of the MB system is through out-of-level testing. For instance, in many of the talent searches (Assouline & Lupkowski-Shoplik, 1997), the minimum criterion giving access to the competition is a 95 or 97 percentile in regular achievement tests. If we consider the participants to be a fairly representative sample of that top 5% population of academically talented students, then the label “moderate” could be given to the top 20% or 30% (depending on which percentile is used) in these talent searches, and the label “highly” to the top 2% or 3% of them. Note that these computations were easy to make thanks to the metric base of the system.

12. The endorsement of this system by educators and academics in the field implies that they will simply respect as best they can the ratios associated with each label. For instance, the students in an enrich-
A program could be described as follows: "According to the MB system, the students in this program demonstrate at least moderate intellectual giftedness (IQs of 135 and up) and mild academic talent (standardized achievement scores at the 95 level or higher." Lovecky's (1994) two samples could be described as follows: "According to the MB system, the target group comprised 32 extremely gifted children (IQ scores of 170 or more); they were compared to a group of 39 mostly highly gifted children (IQ scores between 140 and 159)."

Referring to the MB system would help disseminate its use, thus bringing much needed conformity in the correspondence between the labels used and the degree of marginality referred to.

Conclusion

The MB system was conceived to bring some degree of uniformity to our thinking about (a) the size of the populations of gifted and talented persons, (b) the subgroups to create within either of these two populations, and (c) the labels to use when referring to these subgroups. The author hopes for reactions from colleagues, so that any desirable modifications can be brought to this proposal. The rapid dissemination of such a system would be a step in the right direction, that of a series of shared definitions and operationalizations within the field. This progressive weeding out of fuzzy and loose thinking about some of our most fundamental concepts would send a much needed message of scientific seriousness, not only to educators outside the field, but to the general public.

References

Author's Note

The preparation of this article was made possible thanks to a grant from the Social Sciences and Humanities Research Council of Canada. The author sincerely thanks Sandra Kay, Kathi Kearney, Julia Osborn, and the reviewers for their very useful comments on the manuscript. Still, the opinions expressed remain the sole responsibility of the author.

Endnotes

'The terms giftedness and talent will be used in this text in accordance with their respective definitions in Gagné's (1995) Differentiated Model of Giftedness and Talent: "Giftedness is formally defined as the possession and use of untrained and spontaneously expressed natural abilities (called aptitudes or gifts) in at least one ability domain to a degree that places the child or adult at least among the top 15% of his or her peers. By contrast, the term talent is formally defined as the superior mastery of systematically developed abilities (or skills) and knowledge in at least one field of human activity, to a degree that places a child's or adult's achievements within at least the upper 15% of agepeers who are active in that field or fields" (pp. 106-107). Note that the 15% value mentioned in both definitions is one of the targets of the present text.

'As defined in most dictionaries, the term prevalence refers to the total size of a targeted population, while the term incidence refers to the number of new individuals (e.g., per week, month, year) entering that target population, for instance, the yearly increase or decrease in gifted or talented students being served in enrichment programs.

'An impersonal and dissociated approach to my own earlier work was adopted to respect the rules of the blind review process. I kept it in the final draft so that the two systems could be more easily distinguished.